SYNTHESIS OF 3'-DEOXYRIBOSTAMYCIN

Sir:

Recently we reported¹⁾ the synthesis of 3', 4'dideoxyribostamycin. It was effective against resistant bacteria which produced kanamycinneomycin phosphotransferase II^{20} . In a previous paper on the synthesis of 3'-deoxykanamycin B^{80} we reported a useful procedure for removing the 3-hydroxyl group from 2, 6-diamino-2, 6dideoxy-D-glucose moiety of kanamycin B. In this paper we describe the synthesis of 3'-deoxyribostamycin by the same dehydroxylation method.

6, 5"-Di-O-acetyl-1, 3, 2', 6'-tetra-N-benzyloxycarbonyl-2", 3"-O-cyclohexylideneribosta $mycin^{1}$ (1) (1 mol eq.) and tosyl chloride (5 mol eq.) were dissolved in pyridine and the solution was allowed to stand at 37°C overnight. On tlc (silica gel) with benzene-ethyl acetatae (5:1), the solution gave three spots, 0.46 (major, 2), 0.57 (4'-O-tosyl isomer?) and 0.71 (3', 4'-di-O-tosyl isomer?). Purification of the reaction mixture by column chromatography (silica gel) with benzene-ethyl acetate (5:2) gave the 3'-O-tosyl derivative (2) in 70 % yield, mp 105 \sim 107°C, $[\alpha]_{D}^{25} + 4.9^{\circ}$ (c 2, CHCl₃); NMR (in CDCl₃): τ 8.00 and 7.97 (each 3H s, Ac), 7.68 (3H s, Tos (CH₃)). [Calcd. for C₆₆H₇₆N₄O₂₂S: C 60.54, H 5.85, N 4.28, S 2.45; Found: C 60.52, H 5.85, N 4.19, S 2.68]. As by-products, the 4'-O-tosyl and di-O-tosyl compounds were obtained in yields of 10 % and 3 %, respectively. The

tosyl group was replaced with iodine by the reaction with sodium iodide in DMF (100°C, 10 hr). Chromatography on silica gel with benzene-ethyl acetate (3:1) gave the 3'-iodo derivative (3) (36 % yield), mp 103~106°C, $[\alpha]_{D}^{25} + 7^{\circ} (c \ 1, \ CHCl_{3}); \ NMR \ (in \ CDCl_{3}): \ \tau \ 7.96$ and 7.93 (each 3H s, Ac). [Calcd. for $C_{59}H_{69}N_4$ -O₁₉I: C 56.01, H 5.50, N 4.43, I 10.03; Found: C 56.04, H 5.51, N 4.32, I 9.74]. Repeated hydrogenation of 3 with RANEY nickel in dioxane containing triethylamine gave the 3'deoxy derivative (4) in a yield of 60 %, mp 93 \sim 94.5°C, $[\alpha]_D^{25}$ +1.4° (c 2, CHCl₃). [Calcd. for C₅₉H₇₀N₄O₁₉: C 62.20, H 6.19, N 4.92: Found: C 62.29, H 6.20, N 4.77]. Deacetylation of 4 with 10 % methanolic ammonia gave the tetra-N-benzyloxycarbonyl-2", 3"-O-cyclohexylidene derivative (5) quantitatively, mp $104 \sim 107^{\circ}C$ (from benzene-n-hexane), $[\alpha]_D^{25} + 8.4^\circ$ (c 3, CHCl₃). [Calcd. for $C_{55}H_{66}N_4O_{17}$: C 62.60, H 6.31, N 5.31; Found: C 62.39, H 6.35, N 5.10].

Compound 5 was successively treated with palladium black and hydrogen (501bs/in^2) in aqueous dioxane to remove the carbobenzyloxy groups, and with 1N hydrochloric acid to remove the cyclohexylidene group. The deblocked product was purified on a column of CM-Sephadex C-25 (NH₄⁺ form) with ammonia (0~ 0.2N). 3'-Deoxyribostamycin (6) was obtained in 60 % yield, mp 139~144°C (decomp.), $[\alpha]_D^{25}$ + 41° (c 1, H₂O); NMR (in D₂O at 100 MHz): τ 8.83 (1H q, J 13 Hz, H-2_{ax}), 8.40 (1H q, J~12 Hz, H-3'_{ax}), 8.2~7.9 (2H m, H-2_{eq}, H-3'_{eq}), 4.72

			Minimal inhibitory concentration (mcg/ml)	
T	est organism	S*	3'-Deoxyribostamycin	3', 4'-Dideoxyribosta- mycin
Staphylococcus aureus		FDA 209 P	3.12	6.25
Sarcina lutea		PCI 1001	100	100
Bacillus subtilis		NRRL B-558	0.20	0.39
Klebsiella pneur	moniae	PCI 602	1.56	6.25
"		type 22 #3038	3.12	12.5
Salmonella typhosa		T-63	0.78	1.56
Escherichia coli		NIHJ	1.56	6.25
"	K-12		0.78	3.12
"	"	R5	100	>100
"	"	ML 1629	100	>100
"	"	ML 1630	50	100
"	"	ML 1410	1.56	6.25
"	"	" R 81	>100	>100
"	"	LA 290 R 55	1.56	6.25
"	"	" R 56	1.56	3.12
"	"	" R.64	1.56	3.12
"	"	C 600 R 135	1.56	3.12
"	"	W 677	1.56	1.56
"	"	JR 66/W 677	6.25	12.5
"	"	J 5 R 11-2	50	100
Pseudomonas aeruginosa		A 3	3.12	12.5
"		No. 12	6.25	12.5
"		GN 315	>100	>100
"		99	12.5	25
Proteus rettgeri		GN 311	6.25	12.5
"		GN 466	3.12	6.25
Mycobacterium smegmatis		ATCC 607**	0.78	3.12

Table 1. Antibacterial spectra of 3'-deoxyribostamycin and 3', 4'-dideoxyribostamycin

* Agar dilution streak method (nutrient agar, 37°C, 18 hr.)

** 48 hr.

(2H m, 5Hz at half-height width, H-1', H-1''). Upon irradiation at τ 7.11, the multiplet at τ 4.72 collapsed to slightly broadened singlet (2.5 Hz at half-height width), indicating that the signals of H-2' is in the area of τ 7.11, and at the same time, the quartet at τ 8.40 (H-3'_{ax}) collapsed to a triplet. The NMR (in D₂O) of the tetrahydrochloride of 6: τ 4.66 (1H d, J 1 Hz, H-1''), 4.14 (1H d, J 3.5 Hz, H-1'). [Calcd. for C₁₇H₃₄N₄O₉. 2H₂O: C 43.03, H 8.07, N 11.80; Found: C 43.59, H 8.07, N 11.75].

The synthetic 3'-deoxyribostamycin showed markedly enhanced antibacterial activity against sensitive and resistant bacteria (Table 1) as compared to 3', 4'-dideoxyribostamycin.

DAISHIRO IKEDA TSUTOMU TSUCHIYA SUMIO UMEZAWA Department of Applied Chemistry, Keio University, Hiyoshi, Yokohama, Japan HAMAO UMEZAWA Institute of Microbial Chemistry, Kamiosaki, Shinagawa, Tokyo, Japan (Received September 28, 1973)

References

 UMEZAWA, S.; T. TSUCHIYA, D. IKEDA & H. UMEZAWA: Syntheses of 3', 4'-dideoxy and 3', 4', 5''-trideoxyribostamycin active against kanamycin-resistant E. coli and P. aeruginosa. J. Antibiotics 25: 613~616, 1972 2) YAGISAWA, M.; H. YAMAMOTO, H. NAGANAWA, S. KONDO, T. TAKEUCHI & H. UMEZAWA: A new enzyme in *Escherichia coli* carrying R factor phosphorylating 3'-hydroxyl of butirosin A, kanamycin, neamine and ribostamycin. J. Antibiotics 25: 748~750, 1972

 TAKAGI, Y.; T. MIYAKE, T. TSUCHIYA, S. UMEZAWA & H. UMEZAWA: Synthesis of 3'deoxykanamycin B. J. Antibiotics 26: 403~406, 1973